A Software Protocol for Distributed Simulation Models

S. L Wright V. E. Veraartand B. A Keating
APSRU,CSIRO Tropical Agriculiure, Qld 4330, Australia

Abstract it is much more effective for a scientist to take advantage of an existing simulation system for performing
their work since a large amoumt of the infrastructure, existing models and model componenis have already been written.
However, a major problem with using an existing system is Jearning how it works, adding your own code o it and interfacing
to the existing components, We are overcoming these, and other, problems by defining and implementing a proiocol that will
enabie a scientist to casily add components to any simulation system that complies with the protocol. A simulation system
that uses the protocol is strucrured as a set of components, each handling a well-gefined aspect of the simulation, i.¢. a set of
state variables. A component could therefore represent a spatial or temporal variation in some state variables, or the spatial or
temporal dimensions could be distributed over a number of components as appropriate to the system under investigation. An
interface description defines the component’s state variables and the variables it requires from other components. The code
needed to pass data between the components is autoratically generated from the interface descriptions and is attached to each
component when the simulation is built. A Protocol Manager component is responsible for ensuring that the required variable
values are given to the appropriate components at the correct time, Simulation systems that use the protocol can be composed
mto larger systems in a hierarchical way and simulation components can exist on one computer of be distributed over a
network. The requirements for the protocol have been specified and 2 prototype implementation is being developed and tested
by linking twe different simulation systems {aot currently using the protocol) into a composite system in order to demonsiraie
the capabilities of the protocol.

These two phenomena are not unrclated. The complexity
1. INTRODUCTION of some of .the systems.that people want to simulate
requires a range of expertise (both in the science and the
software domains) that can rarcly be found in one
individual, or even im a single research group. The
particular work that motivated the approach described in
this paper was the requirement for two independent
simulation pregrams, written by independent research
groups, in different programming languages, to interact in
the simulation of a composiie systera. Given the already
large investiment in both software systems it is neither
economic, nor feasible, to re-write or translate either or
both systems into a common framework, or programming
language. In fact it is critically important io maintain the
existing scientific validation of the independent sysiems
by aliering them as litile as possible. Thus we need
'something' to tic together large chunks of existing
software into a new simulation system. Rather than
resorting to a onc-off solution to this particular problem
we decided to develop a software protocol and
implementation that will enable easy construction of such
systems in the future and allow either existing, or new,

collaborate X . X ; .
i simulation codes 1o be integrated in a convenient manner.
e The scale and complexity of the systems lo be

simulated

Simulation is a very powerful too! for modelling and
otherwise attempting to understand the structure and
behaviour of sysiems, both natural and manufactured.
Therefore it is not surprising that many scientists have
used simulation techniques in their particular domain of
interest. However since it is often difficult to use existing
simulation software, see the discussion in a later section,
many scientists have built their own software. This
approach causes its own problems with the need to
grapple with representational and programming problems
as well as the scientific problems. There s also the
problem of the 'waste' of resources when many people re-
imvent the same ‘wheels’, ie the fairly standard
mechanisms used in most sofiware simulation systems.

The rationale for the work reported in this paper is driven
by two relatively new phenomena in the domain of
scientific simulation:

» Increasingly important imperative for sciemtists to

931

2. CHARACTERISTICS OF SYSTEMS T0O BE
SIMULATED

An important requirement for this work is that it shonid
be able to construct multi-dimensional simulation systems
that can be easily reconfipured, adapted and changed. A
major problem with many software simulation systems is
that if they are constructed with a particalar
dimensionality, c.g. l-spatial and a time dimension, then
it is often difficult to change them to be, e.g. two-spatial
dimensions+time. I i3 also often difficult to integrate
systems with different dimensionalities. In our case we
need to combine APSIM and FarmWiSe.

APEIM, McCown et al. [1996], is a Farming Systems
simnulator that can simulate realistic Farm Management
Senarios of crop rotations, etc. for systems analysis
purposes. It has a large collection of crop simulation
modules that perforin bio-physical simulations of
particular crops and pastures under different
environmental conditions {weather, irrigation,
fertilisation, etc.). It uses a single spatial dimension (depth
and height above ground) as representative of a paddock.
and uses a 1 day time-step over the simulation period
(typically ~100 days for many individual crops, but it is
often used to simulate 50-100 year cycles of different crop
rotations, eic.). FarmWite, Moore, et al. [1991], is a
Farm-level simulation that has multiple paddocks with
pastures plus animals (sheep and cattle) that is used
mainly for cconomic forecasting and as a Decision
Support Sysiem.

The integrated system requires the use of the APSIM crop
medules and management capabilities with the FarmWibe
animal and econcnucs modules. In the future APSIM will
be required to simulate 1 ¥ or 2 spatial dimensions and
varigble time steps.

The concept used to Integrate the two systems is 1o isolate
the imporiant state variables and activities into
componenis and describe the simulation in terms of
mtcractions between these components. Both existing
systeis are basically discrete event simulations, however
one component used in APSIM (a Soil/Water balance) can
be a continuous system inside the component although it
interacts with the rest of the system in the discrete event
style. Thus the conceptual model of the new system is to
have tightly coupled systems within one component
(either continuous or discrete event mode) and loose
coupling between components (via discrete events).

The current APSIM is a good example of this structure.
Fach crop has a very complex internal stnicture (which is,
incidentally, difficult to specify with commercial
simulation sysiems) but has a very straighi-forward
interaction with other parts of the system.

3. RATIONALE FOR A SOFTWARE PROTOCOL
APPROACH

There are many possible approaches fo constructing
simulation systems:

o use commercial software,

e use somebody else's software

» build your own (optionally using existing simulation
libraries)

Use of commercial simulation packages is difficult in
many cases, for many and various reasons. Many of these
packages are, by their nature, very general and thus there
is a largs gap between the problem domain of discourse
and the implementation domain of discourse, Many use
proprietary languages, or require you to writs code in pre-
specified languages and according to their requirements.
They often have graphical interfaces which are good t©
use for simple systems but it is often difficult to express
complex models with them. There are ofien speed
problems, cost problems and support problems. The latter
is important as we have to distribute our system to ~100
users nationally and internationally.

Using other people's software is also fraught with
difficulty: The learning curve is often steep, particularly
with the little documentation that tends to be provided
with such systems. How is code interfaced imito their
system, how do vou adapt to their way of working and
expressing the system to be simulated? Building your own
software has iis own problems, especially in resowrce
terms, even if you use existing soffware libraries for
particular parts of the simulation.

In our case we have existing software that has to be (re-

Jused, thus we defined the options as:

¢ build a super-structure around both systems

¢ standardise on ong system and interface the other to it

s decompose both systems into convenient modules’ and
pt them together in a new infrastructure

it was not difficult to decide on the last approach as the
most convenient for the current project, and the one with
the best possibilities for future evolution and development.
Te achieve this we necded to sepatale the ‘science’,
'simulation’ and ‘software’ aspects of the software. The
bulk of the two existing systems would be left alone, or
only very slightly modified for interface purposes. as the
'computational' modules (the “science’ parts). A software
infrastructure would provide the mechanisms to facilitate
the organisation and comumunication between these parts
and a way of specifying the behaviour of the simulation
We define this infrastructure in terms of a Protoce! - a
specification of how separate components can be
organised into systems and how they may commmunicate
with each other. The first activity of the joint development
group was to define the set of requirements for the
protocot that all conld agree upon.

4. PROTOCOL REQUIREMENTS

The conceptual basis for the protocol requircments were

developed in various ways, including:

s g two-day meeting of 'experts’, i the development
teamus. Both sclentists and software experts disoussed
the essential needs that the software had to meet to be
useful, looked at cxample systems that might be

constructed with the protocol and wrote an initial
report

a questionnaire was developed and sent to a large
population sampie of modellers, simulation developers
and users in the agricultural modelling community

a detailed investigation of the existing systems was
performed

observation and analysis of the use of these sysiems -
both by experts and novices was undertaken

The information was used to genmerale 2 requirements
document that was circulated for comments within the
development group. After a few revision cycles it was
released to a slightly wider audience for further
comments, After further revision 1t was adopied as the
worling requirements documet. At this point some
people in the group felt the need for a much wider
distribution o get external inpuis from a wider range of
potentially interested parties. However it was decided to
construct an initial prototype that could be used to validate

the basic ideas before seeking further input, and as a focus
of further requiremenis elicitation,

5. CONCEPTUAL MODEL

We felt the important requirements were for the protocol
o
» be fairly general (but balanced with the need 1o not
exaggerate the semantic gap to the science)

use the concept of composition of a system out of
discrete components

use a hierarchy to enable scalability of the system
provide the potential for relatively fine granularity to
enable smail-scale detailed simulation

have support tools to build much of the interfacing
software automatically

The requirements were expressed in terms of the
following logical conceptual model:

System 1 System 2
Compenent 1 Companent 2 Component 3 Componené X Componant Y
Protocol
Protocol Code Manager
Ranager Code Code Code Code
Vars
Yars Vars Vars Vars
Protocol
Converler
Bus 1 D Bus 2

Figure §

A simulation is composed of a sct of Systems (only two
are shown in Figure 1) that are connected o a common
software 'bus' capable of passing messages and data
between the systems. The capability is provided for
different Systems {o use different protocols (although they
obviousty must have some basic properties in comumon in
order to interact!} which are translated by a Protocol
Converter. In our particular case one system s APSIM
and the other is FarmWife with no protocol converter as
they are both to use the same protocol. Every System is
composed of a set of components, zlso connected {0 the
bus, each handling a well-defined aspect of the
simulation, Le. a set of state varables (represemted by
Vars in Figure 1). A component could therefore represent
a spatial or temporal variation in some state variables, or
the spatial or temporal dimensions could be distributed
over 3 number of components as appropriate to the system
under investigation. Thus these are the 'computational' or
‘science’ components of a simulation.

Each componeni has an interface description which
defines the component’s state variables and the variables
i requires from other components. It also defines the
events thal a component responds to and gencrates. The
code needed 1o pass data and events between components
is automatically generated from the interface descriptions

933

and is attached to cach component when the simulation is
built. Each System and each complete Simulation is also
defined by an interface description allowing other aspects
of the sofiware system to be generated automatically. A
Protocol Manager component is responsible for ensuring
that the required variable values and events are given to
the appropniate components at the correct time. This
provides the 'simulation engine’ or sequencing part of the
simulation. It also handles global tasks such as
checkpointing and restarting the whole stmulation when
required. Each component within a System can itself be a
Hystem, This provides the hierarchical composition
property that enables many levels of absiraction to be
modelled in a convenient manner. Components can exist
on one computer or be distributed over a network,
allowing for concurrent, parallel computation. Filiers can
be imtroduced into the system to perform tasks such as
data transformations, ¢.g. changing units from imperial (o
metric, accumulation or buffering, etc.

6. ARCHITECTURE

The logical Architecture of the Protocal is shown in
Figure 2.

I
System | I System 2
— - o
) Protocol c N System 2 ; i Protocol E System |
g ci B omg Proxy i ‘ Manager : Proxy
) T oL 2 [o
SETRE] T & ‘ LI :
Protocol E T’L T § ? 3 . k4 T 'L
[Variable/Event Layer | ; i Vmableva|
bl P K
[i i &: i
i | Message Layer i 5 fj Message LI
”““' L é
3 Ly - IR o i
' Loader | Services H Transport Layer ! ! | Loader | Serv';cesh T|
- Z T] : 7
: et — X
L | Comms eg TCPAP E - i - QIT;‘
Fosi [Operating System | I N O E
- I
!

Figure 2

Figure 2 shows two Systems of a simulation executing on
two machines on a network. At the botiom of the Protocol
Architecture is the Transport and Services Layer - these
provide a thin interface to the services (e.g. File System)
of the Host Operating System, and its communication
services, that the Protocot requires.

The Message Laver provides a message service capable of
defining and transporting messages and data structures
between componenis of a simulation, The Variable/Event
layer provides a clean abstraction of variables and events
to components. Only one component, labelled Comp N, is
shown in the Figure but there can be an arbitrary number
of them. Each component has an Interface Layer (shown
as IL on the Figure) whose main task is to react to gach
event when it comes into the component from the rest of
the simulation. This is basically a look-up table from
event to event handler (implemented as a function).

Fvent | paraml, param?.... -+ Comp. fn | {paraml,...}
Event 2 paraml, param?.... — Comp. in 2 {paraml,...}

The [L. alsc handles requests for variable data by
translating an extermal variable name {e.g
System1.CompN.SoilProfile), locating the required
interna! data and passing this back o the system. The IL
for each component is generated from the Component
Interface Description in which the component developer
has specified the relationship of events to internal
functions that handle the event, and the relationships
between internal and external variable names.

The Protocol Manager controls the sequence of events
within the stmalation. The normal configuration is to
have event tables controlling the distribution of events,
Thus when an event occurs (i.e. is generated in one
component) it is sent to the PM. The PM looks up the
event tables and distributes appropriate events to other
compenents of the system. Event tables are imitially
generated at system construction time from the interface
Descriptions of all the components and other system
configuration information. however the event tables are

934

dynamic and can be changed while the system 1is
executing. Events and Variable requests for
Systems/Components that are not local to a machine are
handled by a Proxy Component which can perform
optimisations such as caching, etc. Messages between
components on one machine does not have to go through
the Operating System communications System but are
handled by more efficient mechanisms in the transport
jayer.

7. APPROACH TO SOFTWARE

DEVELOPMENT PROCESS

THE

This project involves software professionals and is being
conducted as a software development project. We have
adopted an iterative, incremental and
evolutionary/prototyping Software Development Life-
Cycle that could be summarised as:

» Relatively complete Requirements and Specification
s Architecture to meet major Requirements
= Prototype Design of critical Architectural
features
s Prototype Implementation
= [terate
s Add more design components,
iterate
= Review
= Revise architecture if necessary and repeat
s Review
s Add further architectural features and repeat
s Revise requirements/specification as ngcessary
¢ Repeat and review
¢ Add minor requirements, etc.
= Repeat and review, elc.

prototype,

Experience with this type of approach, Gilb [1988],
suggests that such a Life-Cycle will be successful if you
have at ieast 70% of the key requirements in the first
ieration (we probably have 90% in this case), along with
the major architectural features. We are mainly using an

Object-Oriented approach in our work, but note that this
has no impact on the format or structure of the existing
code much of which is writien in Fortran 77. The need to
be able to use the existing code untouched was a primary
requirement, The initial development is being done on a
P{-baszd plaform with Windows 95 and NT Operating
Systems using C++ and Borland Delphi. However the
basic communications layer of the prototype interfaces to
TCP/IP so there is no reason why versions of the protocol
should not be implemented and made available on other
popular operating system platforms such as Unix,

8. CONVERTING EXISTING SYSTEMS TO USE
THE PROTOCOL

One main advantage of this approach to simulation
systems is the ability to re-use existing simulation code.
Given that a software simulation code exists, and there is
a desire to take advantage of the Protocol facilities, how
easy is it to converl the existing code to using the
protocol? Naturaily this depends on the structure of the
existing system. If it is well-structured {in the structured
programiming or object-oriented sense) then it should not
be too difficuit to re-organise it into a form suitable for use
with the protocol.

The first step is to identify the state variables of the
simulation ang group them in a way that is logicai in the
science context of the simulation. These groups become
the componenis in the protocol version of the system. The
second step is to identify the key events within the system
and find (or create if they do not already exist) the
subroutine, procedurz or function call that executes the
logic pestaining to that ovent. Ap interface description can
then be written to define the properties of each component
and the Interface generator executed 1o build the interface
code. The parts of cach component can then be linked into
a library, or executable, unit.

The third step is to define the intcractions between the
components, in terms of the state variables and events,
and define a Protocol Manager to coordinate execution of
the simulation. This, in general, should not be a difficult
task as most simulations usually have some sort of driver,
or engine, logic. e.g. the engine code of the existing
APSIM software which generates the time events that
trigger the daily time-siep actions for the other APSIM
modutes.

As an cxampie let us look at the process of moving the
current version of APSIM to use the protocol. APSIM is a
single very large executable program but is actually well
structured in terms of isolation of statc variables. Each
crop is in its own conceptual module g3 are the soil and
environmental processes. This structure was designed as a
improvement from the ancestors of APSIM (which mixed
crop, soil and eavironmeni compulation) snabling new
crops, environmental processss gtc. to be easily added o
the sysicmn. Thus step one has already been atiained
(Figure 3.

W

Germination Sorghum
Rainfali Wheat
Water
Sail Wheat S—e Sail-Nitrogen
Temperature Soil-Vater
Nitrogen Meteorology
Figure 3

APSIM also has a primitive concept of events but
currently these are fixed. At the start of execution of a
simulation there is an Initialisation event allowing all the
modules to initialise themseslves. On each time step there
are Preprocess, Procesess, and Post-process events.
Individual crops also have other events that they respond
to such as Harvest, Kill, etc. The distribution of Jogic for
event handling is currently a complex nested if statemnent
in each module with considerable code in each branch

{Figure 4).

i
e

Sorghum - Sorghum

Wheat ﬁ:’; Wheat
o &

Snil-Nitrogen o @& Soil-Nitrogen
Soit-Water ::t Soil-Water
Meteorology —rg Meteorology

Figure 4

This is easily converted into an event dispatch table by
putting all the code for each event into one subroutine and
calling it as necessary. Handling of variables is also
relatively straight-forward as the commeon error of sharing
variables indiscriminately between modules via
FORTRAN common blocks had been avoided. There is a
clear protocol of variable exchange between the modules
at Pre~ and Posi- process phases and computation only
during the Process Phase. Gther simulation codes might
require this clean separation of variable access to be
performed and debupgged in the existing code before
converting 1o adopi the protocol. This process also
clarifies the relationships between the modules in the

system (Figure 5).

The APSIM modules have now been transformed, by very
minor changes in this case, inio components, in the sense
defined by this protocol. Description files can now be
written defining their interfaces to the rest of the system.
These descriptions can be used fo gencrate the necessary
interface layer iogic and we can dispense with the hand-
coded APSIM equivalent.

We found that event sequencing {synchronous) was
handled by an ‘engine’ built into the code. In adapting to
the protocol this ‘engine’ logic can be replaced by the

gvent sequencing and distribution of the Protocol
Manager.
T
—# Sorghum Sorghum
—i
e Wheat Wheat
m
g—le SoilNitrogen | —s | © Soil-itrogen
W
—y Soii-Vater Saoil-Water
g Meteorology Meteorciogy
Figure 5

The prototype implementation uses 2 very simple text file
format to describe the interfaces and system configuration
information which is similar in structure to the standard
N fife format used by Microsoft Windows, e.g,

Simulation.dse contains:
{Simulation]
name={esisim
system=Systemt,sysl dsc
system=Systern2,sys2.dsc

sysl.dse contains:

[System]

name=APSIMyv[.3
component=Nwheat, Nwheat dsc
component=5oil Wat, Soll Wat2.dsc
component=S30ilN, SoilN2.dsc
component=Met Met2 dsc

{VariableMap}

Nwheat. SeilProfile=Soil Wat. SoilProfile
Nwheat NProfile=SeifN. NProfile
SoilWat Rainfall=Met.Rainfall

Nwheat.dsc contains:
{Component]
namc=Nwheat].9
fin]
var=SoiProfile
var=NProfile
var=temperature
var=SolRadn
event=Harvest
event=Kil}

{Out]

var=yieid

SoiWatl.dsc contains:
fComponcnt|
name=501Watl2 3

fIn}

var=Rainfall
var=femperature

[Out]

var=SoilProfile

Met2.dsc contains:
| Component]

936

name=Met2.2
{Out]
var=Rainfall
var=Temperatire
var=S0lRadn

9. CONCLUSIONS

What differentiates our appreach to simulation systems, as

described in this paper, to other methods?

= It is designed to take advantage of existing code - not
to force re-writing or writing from scratch

o Our system calls the existing software rather than
requiring existing software to be adapted to call our
routines

o The system works from lpgical descriptions of the
stracture and interactions of the components, and tools
are used to build much of the software from these user
prepared descriptions

e Only the infrastructure is currently provided, adopters
can suppiy their own simulation utilities. or other
frameworks, ecither home built or commercial, o
support the simulation aspects

The initial requirements (Wright [19972]) and
architecture (Wright [1997b]) have been well received and
we are currently protobyping the varicus architecture
components. We feel that this approach to the
construction of simulation systems will prove to be a very
powerful one enabling many interesting hybrid systems to
be constructed. Many of the problems in doing this work
using such an approach are not iechnical ones to do with
software, but interesting scientific issaes such as how fo
interface two systems- working on different time-sieps.
how to handle the different spatial mappings, ete. These
we will leave to the scientists o resolve!

1. REFERENCES

Gilb, T, Principles of Software Engineering
Management, Addison-Wesiey, 1988,

McCown, R.L., G. L. Hammer, J.N.G. Hargreaves, D.P.
Holzworth and D.M.Freebairn, ASPIM:A Novel
Software System for Model Developmen:. Model
Testing and Simulation in Agricultural Systems
Research, Agricyltural Systems, 50, 255-271. 1996,

Moore, AD.. IR Donnelly, M. Freer, GRAZPLAN an
Australian DSS for enterprises based on grazed
pastures. Proceedings International Conference on
Decision Support Systems for Resource
Management, Texas A&M University, College
Station. Texas, USA, April 15-18, 1991,

Wright, SL.. Requirements for MDP Protocol, CSIRO
Tropical Agricuiture Internal Report, April, 1997,

Wright. 5.L.. Architecture for MDP Protocol, CSIRO
Tropical Agriculture Internal Report, August,
1997,

